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One of the most crucial domains of interdisciplinary research is the relationship between the dynamics and
structural characteristics. In this paper, we introduce a family of small-world networks, parameterized
through a variable d controlling the scale of graph completeness or of network clustering. We study the
Laplacian eigenvalues of these networks, which are determined through analytic recursive equations. This
allows us to analyze the spectra in depth and to determine the corresponding spectral dimension. Based on
these results, we consider the networks in the framework of generalized Gaussian structures, whose physical
behavior is exemplified on the relaxation dynamics and on the fluorescence depolarization under
quasiresonant energy transfer. Although the networks have the same number of nodes (beads) and edges
(springs) as the dual Sierpinski gaskets, they display rather different dynamic behavior.

O
ne of the most major problems in the study of networks is to understand the relations between their
topology and the dynamics1. For instance, in the framework of generalized Gaussian structures
(GGSs)2–5, the dynamics of polymer networks is fully described through the Laplacian eigenvectors

and eigenvalues. In the field of GGSs and dynamical processes, the investigation of Laplacian eigenmodes has a
paramount importance for the relaxation dynamics, the fluorescence depolarization by quasiresonant energy
transfer6–8, the mean first-passage time problems9–11, and so on. Laplacian eigenvalues and eigenvectors play an
irreplaceable role and they are also relevant to multi-aspects of complex network structures, like spanning trees12,
resistance distance13 and community structure14. However, it is a challenging task to derive exact Laplacian
eigenvalues or eigenvectors for a complex system and based on them to describe its dynamics. We remark that
for this the use of deterministic structures is of much help15–19. Although the structural disorder leads in case of
many real networks like hyperbranched polymers to smoothing-out and averaging, the topological features are
still reflected in the typical scaling behaviors20. Furthermore, recently a striking development of chemistry made
possible the synthesis of the hierarchical, fractal Sierpinski-type compounds21. Undoubtedly, this new achieve-
ment will keep the interest of the theorists on the regular structures, especially on those with loops.

The study of Laplacian eigenvalues has exhibited its activity during the past few decades, among extensive
subjects and researches. The works from last century had solved the Laplacian eigenvalues for considerable
amount of famous networks, like dual Sierpinski gaskets (in 2 or higher dimensions)15,16, dendrimers17, and
Vicsek fractals18,19. Another type of model structures, which often arise in the complex systems or polymer
networks, are the so-called small-world networks (SWNs)22–25. Recent studies have also suggested that SWNs
play a notable role in real life26,27.

In this report we introduce a new kind of SWNs. Their construction is based on complete graphs consisting of d
nodes and they have the same number of nodes and of edges as the dual Sierpinski gaskets embedded in (d 2 1)-
dimension. A complete graph is a simple undirected graph in which every pair of distinct vertices is connected by
a unique edge. It has been widely used in quantum walks28,29, tensor networks30, social networks31, and explosive
percolation problem32. While the SWNs introduced here are based on complete graph, their clustering coefficient
shows that the SWNs are similar to complete graphs only in the limit d R ‘. As we proceed to show, also in this
limit they have similar behavior as the dual Sierpinski gaskets embedded in to d R ‘ dimensions. On the other
hand, for finite d, the SWNs display a macroscopically distinguishable behavior.

The report is organized as follows: First, we present the construction of SWNs, analyze their properties and
their Laplacian spectra (the derivation of the recursive equations for the eigenvalues is given in Methods). Then,
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based on the spectra we consider the dynamics of networks, namely,
the structural average of the mean monomer displacement under
applied constant force and the mechanical relaxation moduli, and
the dynamics on networks, exemplified through the fluorescence
depolarization. Finally, we summarize and discuss our results.

Results
Model structures. We start with a brief introduction to a family of
small-world networks (SWNs)Vd

g characterized by two parameters d
and g, where d stands for the number of nodes of complete graph and
g for the current generation. Figure 1 shows a construction process
from V3

1 to V3
3: At first, V3

1 is a simple triangle, that is, a complete
graph with 3 nodes. At the next stage, each node inV3

1 is replaced by a
new complete graph. Thus each of the newly appeared complete
graphs contains exactly one node of V3

1 and we get the network at
second generation V3

2. The growth process to the next generation
continues in a similar way: Connecting a complete graph to each of
the node of V3

2 one gets V3
3. In general, we have dg21 nodes at

generation g 2 1. By attaching d 2 1 nodes to each existing node,
increases their total number from dg21 to dg. In this way, we get
immediately the number of nodes in this network, Nd

g ~dg , and

the number of edges, Ed
g ~

1
2

dgz1{d
� �

. It has to be mentioned

that the dual Sierpinski gaskets embedded in (d 2 1)-dimension
have exactly the same number of nodes and of edges33.

To give evidence of the small-world property, we consider another
characteristics, the diameter of the network. For a network, the dia-
meter means the maximum of the shortest distances between all pairs

of nodes in it1. Let D Vd
g

� �
be the diameter of network Vd

g . It is clearly

that at generation g 5 1, D Vd
1

� �
~1. At each iteration g $ 1, new

complete graphs are added to each vertex. Let us define the two nodes
with longest distance in the existing network as MA and MB. It is easy
to see that these two nodes belong to the complete graphs attached to
MA and MB, respectively. Hence, at any iteration, the diameter of the
network increases by 2 at most. Then the diameter of Vg is just equal
to 2g 2 1, a result irrelevant to parameter d. The value can be pre-
sented by another form 2 logdNg 2 1, which grows logarithmically
with the network size indicating that the networks Vd

g are small-
world1.

Now we turn to the clustering coefficient of any node i, which is
given by Ci 5 2ei/[ki(ki 2 1)], where ei is the number of existing links
between all the ki neighbors of node i34. From the network construc-
tion, we come to a simple conclusion that if node x exists for h gen-
erations, external (d 2 1)h nodes will be attached to it. That is, kx 5 (d
2 1)h. Among the (d 2 1)h neighbors, d 2 1 nodes that belong to the
same complete graph are connected to each other, leading to the total
number of links ex 5 h[(d 2 1)(d 2 2)/2]. Thus, the Cx is given by

Cx~
2ex

kx kx{1ð Þ~
d{2

h d{1ð Þ{1
: ð1Þ

Based on equation (1) we can list the correspondence between each
kind of clustering coefficient and the corresponding amount of nodes:

Ci~

1 for d{1ð Þdg{1 nodes,
d{2

2 d{1ð Þ{1
for d{1ð Þdg{2 nodes,

..

. ..
.

d{2
g d{1ð Þ{1

for d{1ð Þd0z1 nodes,

8>>>>>>>><
>>>>>>>>:

ð2Þ

where the last situation represents the center of the whole network.
Then we can obtain the average clustering coefficient of all the nodes,

Ch i~ 1
Nd

g

d{2
d{1ð Þg{1

z
Xg

k~1

d{1ð Þdg{k d{2
d{1ð Þk{1

" #
: ð3Þ

Figure 2 shows ÆCæ as a function of g for d going from 3 to 6. As one
can infer from the figure, ÆCæ decreases very rapidly at small genera-
tions to a some constant value, which depends on d. In fact, one can
find from equation (3) that for Vd

? the average clustering coefficient
is given by ÆCæ‘(d) 5 ((d 2 1)/d)2F1[(d 2 2)/(d 2 1), 1; (2d 2 3)/
(d 2 1); 1/d], where 2F1[…] is the hypergeometric function, i.e.
ÆCæ‘(3) < 0.76, ÆCæ‘(4) < 0.84, ÆCæ‘(5) < 0.88, and ÆCæ‘(6) < 0.9.
For very large d (d R ‘), equation (3) converges to value �C~1, an
inherent property of a complete graph.

Recursion formulae for the Laplacian spectrum. Let Ad
g ~

Aij
� �

dg |dg denote the adjacency matrix of Vd
g , where Aij 5 Aji 5 1

if nodes i and j are adjacent, Aij 5 Aji 5 0 otherwise, then the degree
of node i is di~

X
j[Vd

g
Aij. Let Dd

g ~diag d1, d2, . . . , ddgð Þ denote

the diagonal degree matrix of Vd
g , then the Laplacian matrix of Vd

g is

defined by Ld
g ~Dd

g {Ad
g .

To get a solution for the eigenvalues of L Vd
g

� �
, we have to con-

centrate our attention on its characteristic polynomial, Pd
g lð Þ. Here

we just give a result and put off the proof and details in Methods:

Pd
g lð Þ~ det lI{L Vd

g

� �� �
~ l{1ð Þd

g{1

l{dð Þ d{2ð Þdg{1

Pd
g{1

l l{dð Þ
l{1

� 	
:

ð4Þ

The recursion relation provided in equation (4) determines the
eigenvalues of Laplacian matrix for Vd

g . Note that Pd
g has a factor

Figure 1 | Construction of Vd
g for d 5 3 and g 5 1 (blue beads), g 5 2

(blue and green beads), g 5 3 (all beads).

Figure 2 | Clustering coefficients of Vd
g for the parameters d from 3 to 6,

when g varies from 1 to 100.
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l 2 d with exponent (d 2 2)dg21, i.e. equation (4) has the root l 5 d
with multiplicity at least (d 2 2)dg21.

It is evident that Vd
g has dg Laplacian eigenvalues, denoted by l

g
1,

l
g
2, …, l

g
dg , the set of which is represented by Lg, i.e.,

Lg~ l
g
1, l

g
2, . . . , l

g
dg


 �
. In addition, without loss of generality, we

assume that l
g
1ƒl

g
2ƒ . . . ƒl

g
dg . On the basis of above analysis, Lg

can be divided into two subsets L 1ð Þ
g and L 2ð Þ

g satisfying Lg~

L 1ð Þ
g |L 2ð Þ

g , where L 1ð Þ
g contains all eigenvalues equal to d, while

L 2ð Þ
g includes the remaining eigenvalues. Thus,

L 1ð Þ
g ~ d, d, d, . . . , d,df g|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dg {2 dg{1

: ð5Þ

The remaining 2dg21 eigenvalues belonging to L 2ð Þ
g are determined

by l{1ð Þd
g{1

Pd
g{1

l l{dð Þ
l{1

� 	
~0. Let the 2dg21 eigenvalues be ~l

g
1,

~l
g
2, …, ~l

g
2dg{1 , respectively. That is, L 2ð Þ

g ~ ~l
g
1, ~l

g
2, . . . , ~l2dg{1

n o
.

Given that the Pd
g{1 is the characteristic polynomial of L Vd

g{1

� �
leading to Ng21 eigenvalues Lg{1~ l

g{1
1 , l

g{1
2 , . . . , l

g{1
dg{1

n o
, the

set L 2ð Þ
g follows from

P
dg{1

i~1
l l{dð Þ{l

g{1
i l{1ð Þ

� �
~0 ð6Þ

or from

l2{ l
g{1
i zd

� �
lzl

g{1
i ~0, ð7Þ

where i runs from 1 to Ng21 5 dg21.
Solving the quadratic equation (7), we obtain two roots

~l
g
i ~r1 l

g{1
i

� �
and ~l

g
izdg{1~r2 l

g{1
i

� �
, where r1(x) and r2(x) are

r1 xð Þ~ 1
2

dzx{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2z2dxzx2{4x
p� �

ð8Þ

and

r2 xð Þ~ 1
2

dzxz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2z2dxzx2{4x
p� �

, ð9Þ

respectively. Thus, each eigenvalue l
g{1
i ofLg21 gives rise to two new

eigenvalues in L 2ð Þ
g by inserting each Laplacian eigenvalue of Vg21

into equations (8) and (9). Considering the initial value
E1 ¼ f0; d; d; d; . . . ; d; d|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

d�1

g, by recursively applying equations (8)

and (9) and accounting for L 1ð Þ
g , the Laplacian eigenvalues of Vg

are fully determined.
It is simple matter to check that equations (8) and (9) have the

following behaviors:

r1 xð Þ^
x=d for 0ƒx=1,

1{
d{1

x
for x?d

8<
: ð10Þ

and

r2 xð Þ^ dz
d{1

d
x for 0ƒx=1,

x for x?d:

8<
: ð11Þ

In this way equation (10) produces only small eigenvalues, r1(x) g
[0, 1) and equation (11) the large ones, r2(x) g [d, ‘). Thus, the
eigenvalue spectrum has always a gap [1, d), which is bigger for
networks Vd

g with larger d.

Now, it is interesting to examine the behavior of the small eigen-
values, i.e. to consider equation (10) for 0ƒx=1. Our goal is to
obtain the spectral dimension ~d (also known as fracton dimension35).
For this we use the methods of Ref. 36. Under equation (10) for x=1,
the n eigenvalues in the interval [lg, lg 1 Dlg] go over in n eigenva-
lues in the interval [lg11, lg11 1 Dlg11/d], while the total number of
modes increases from N to dN. Hence, the density of states (modes)
r(l) for l=1 obeys

Nr lð ÞDl~dNr l=dð ÞDl=d, i:e: r lð Þ~r l=dð Þ: ð12Þ

Using now the relation between r(l) and the spectral dimension ~d35,

r lð Þ*l
~d=2{1 ð13Þ

leads to

d
~d=2{1~1: ð14Þ

This means that the spectral dimension of the networks Vd
g is ~d~2

and ~d is independent on d. We note that for the dual Sierpinski gasket
embedded in (d 2 1)-dimension the spectral dimension is
~d~2 ln dð Þ=ln dz2ð Þ, see e.g. Refs. 37, 38, i.e. it is similar to that of
Vd

g only in the limit d R ‘.

Dynamics of polymer networks under external forces. We are
going to study the networks Vd

g under the framework of
generalized Gaussian structures (GGS)3–5, an extension of the
classical Rouse beads-springs model2,39–41. Here we let all N beads
of the GGS to be assigned to the same friction constant, f. The beads
are connected to each other by elastic springs with spring constant K.
The Langevin equation of motion for the mth bead in a system reads

f
dRm tð Þ

dt
zK

XN

i~1

LmiRi tð Þ~fm tð ÞzFm tð Þ, ð15Þ

where Rm(t) 5 (Xm(t), Ym(t), Zm(t)) is the position vector of the mth
bead at time t, L describing the Laplacian matrix of theVd

g . Moreover,
fm(t) is the thermal noise that is assumed to be Gaussian with zero
mean value Æfm(t)æ 5 0 and Æfma(t)fnb(t9)æ 5 2kBTdabdmnd(t 2 t9),
where kB is the Boltzmann constant, T is the temperature, a and b
represent the x, y, and z directions; Fm(t) is the external force acting
on bead m.

First, we consider a quantity which is related to the micromani-
pulations with the polymer networks42. We put a constant external
force Fk(t) 5 FH(t)dmkey (;k), started to act at t 5 0 (H(t) is the
Heaviside step function) on a single bead m of the Vd

g in the y
direction. After averaging over all possibilities of choosing this
monomer randomly, the displacement reads4,5,39

Y tð Þh i~ Ft
Nf

z
F

sNf

XN

i~2

1{ exp {slitð Þ
li

, ð16Þ

where s 5 K/f is the bond rate constant, and li is the eigenvalues of
matrix L with l1 being the unique smallest eigenvalue 0.

Another example is the response to harmonically applied forces
(strain fields), i.e. Fm(t) 5 c0eivtYm(t)ex. The related response func-
tion is the so-called complex dynamic modulus G*(v), or equiva-
lently, its real G9(v) and imaginary G0(v) components (the storage
and the loss moduli41,43). In the GGS model (for very dilute theta-
solutions) the G9(v) and G0(v) are given by3

G’ vð Þ~ nkBT
N

XN

i~2

v=2slið Þ2

1z v=2slið Þ2
ð17Þ

and
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G’’ vð Þ~ nkBT
N

XN

i~2

v=2sli

1z v=2slið Þ2
, ð18Þ

where n denotes the number of polymer segments (beads) per unit
volume.

We start by focusing on the averaged displacement ÆY(t)æ, equa-

tion (16), where we set s 5 1 and
F
f

~1. Figure 3 displays in double

logarithmic scales the ÆY(t)æ for the networksV4
g consisting of 47 up to

410 beads. As is known4,5,39, the ÆY(t)æ in such GGS at very long times
reaches the domain ÆY(t)æ , Ft/(Nf) and at very short times obeying
ÆY(t)æ , Ft/f. However, in intermediate regime the network’s beads
move for several decades of time very slowly (logarithmic behavior5),
up to the times t , N related to the diffusive motion of the whole
structure. This differs from the corresponding patterns for the dual
Sierpinski gaskets (embedded in (d 2 1)-dimension)37,38, which show
a slow subdiffusive behavior ÆY(t)æ , ta with a < 0.23 for d 5 4.

While the ÆY(t)æ ofVd
g do not scale in the intermediate domain, the

mechanical relaxation functions show in the related frequency
domain a scaling behavior, see the results for storage moduli G9(v)
presented in Fig. 4. Here we plot them in dimensionless units by

setting s 5 1 and
nkBT

N
~1. The networks are the same as for

ÆY(t)æ of Fig. 3. The G9(v) behaves commonly at very small and very
high frequencies as v2 and v0, respectively. The in-between region of
G9(v) (related to the intermediate time domain of ÆY(t)æ) the curves
give in double-logarithmic scales the slopes around 1. This result is
bigger than that in the same region of the corresponding dual
Sierpinski gaskets embedded into 3-dimensional space (there one
has slopes near 0.77)37. For a better visualization, we plot in the inset

of Fig. 4 the effective slopes a’~
d log10G’
� �

d log10v
� � for the same curves of

Fig. 4. As expected, the limiting behaviors for very low and very high
frequencies hold for slope 2 and slope 0. But in the intermediate
frequency region, all of the four curves become wavy. Such a waviness
reflects typically36–38 a very symmetric, hierarchical character of the
structures. In case of real polymer systems, the inherit structural
disorder smooths out such wavy patterns, while keeping the char-
acteristic intermediate scaling20. Finally, the curves cross each other
at the slope 1, keeping a short stable period and then falling into a
value of 0.5.

Fluorescence depolarization. We are now embarking on the
dynamics of energy transfer over a system of chromophores6–8. As
a usual way, we assume that the nodes (beads) only transfer their
energy with their nearest neighbors. Under these conditions the
dipolar quasiresonant energy transfer among the chromophores
obeys the following equation6–8:

dPi tð Þ
dt

~
XNg

j~1
j=1

TijPj tð Þ{
XNg

j~1
j=i

Tij

0
BB@

1
CCAPi tð Þ, ð19Þ

where Pi(t) represents the probability that node i is excited at time t
and Tij is the transfer rate from node j to node i. Following the
framework of Refs. 6–8, we separate the radiative decay (equal for
all chromophores) from the transfer problem, which can be included
by the multiplication of all the Pi(t) by exp(2t/tR), where 1/tR

corresponding to the radiative decay rate. Under the assumption
that all microscopic rates are equal to each other, fixed on a value
~k, equation (19) becomes

dPi tð Þ
dt

~{~k
XNg

j~1
j=1

LijPj tð Þ{ ~kLii

� �
Pi tð Þ, ð20Þ

where Lij is the ijth entry of Laplacian matrix Lg. In equation (20) we
used that for Lg the relation Lii~{

X
j=iLji holds.

The solution of equation (20) requires diagonalization of Lg. The
result for a given Pi(t) depends both on the eigenvalues and on the
eigenvectors of Lg

6–8. However, by averaging over all sites (a proced-
ure fully justified when the dipolar orientations are independent of
the beads’ position in the system), the probability of finding the
excitation at time t on the originally excited chromophore depends
only on the eigenvalues of Lg and is given by6–8

P tð Þh i~ 1
Ng

XNg

i~1

exp {~kl
g
i t

� �
: ð21Þ

Measuring the time in units of 1=~k, we can obtain the ÆP(t)æ with
~k~1. In Fig. 5 we display in double logarithmic scales the average
probability ÆP(t)æ that an initially excited chromophore of the net-
work Vd

g is still or again excited at time t. As for the previous figures,
we choose d 5 4 and change the generation g from 7 to 10, which
means that the number of beads varies from 47 to 410. From Fig. 5 a
waviness superimposed at early times can be observed immediately.
Such waviness has been predicted in the regular hyperbranched

Figure 3 | Averaged monomer displacement ÆY(t)æ for V4
g , where g runs

from 7 to 10.

Figure 4 | Storage modulus G9(v) for V4
g , where g runs from 7 to 10.
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fractals6 and it is related to high symmetry (regularity) of the net-
work, i.e. the averaging due to possible disorder will smooth out the
curves. Besides, in the intermediate time domain the decays show a
power-law behavior, i.e. ÆP(t)æ , t2a. In Fig. 5 the a float around 0.98
for all four generations, a very high value among similar kinds of
networks.

For the sake of comparison, in Fig. 6 we display the ÆP(t)æ for dual
Sierpinski gaskets embedded into 3-dimensional space for genera-
tions g as those in Fig. 5. What is clear from the figure, the curves also
scale in the intermediate time domain, but have a smaller scaling
exponent a 5 0.78 compared to that of the networks introduced in
this paper. Moreover, the four curves saturate to a constant value
later than those of Fig. 5, while the plateau values ÆP(‘)æ are exactly
the same for both figures and equal to 1/Ng

6,7. This indicates that the
equipartition of the energy over all beads is reached faster for the Vd

g

networks than for the dual Sierpinski gaskets with the same number
of nodes and edges.

Discussion
In summary, we have introduced a class of small-world networks
constructed based on complete graphs. First, we have calculated the
full Laplacian spectrum obtained from recursion formulae and
proved its completeness. The corresponding analytic expressions
allowed us to analyze the eigenvalues in detail and to calculate the
related spectral dimension ~d. Using the eigenvalues, we have dis-
cussed the dynamics of such polymer networks in the GGSs
framework, as well as the energy transfer through fluorescence

depolarization. The ensuing spectral dimension ~d~2 leaves its fin-
gerprints in all quantities considered in the paper. In the inter-
mediate time or frequency domain they follow the asymptotic
relations5–7,35,36:

Y tð Þh i* ln t, ð22Þ

G’ vð Þ*G’’ vð Þ*v
~d=2~v1, ð23Þ

P tð Þh i*t{
~d=2~t{1, ð24Þ

which were proven here by the numerical calculations. The networks
introduced here are deterministic and highly structured, however, in
case of a possible weak disorder leading to smoothing out of the
curves the conclusions will still hold.

We believe that recent advances in the synthesis of fractal supra-
macromolecular polymers21 will open new perspectives for the com-
pounds constructed based on the symmetric small-world networks
presented in the report. Finally, we remark that we expect to find
more applications of the networks considered here; in particular, the
analytic expressions for the Laplacian eigenvalues determined here
will be of much help.

Methods
Characteristic polynomial for the Laplacian eigenvalues of Vd

g . Following from the

construction of Vd
g , the adjacency matrix A Vd

g

� �
, the degree matrix D Vd

g

� �
, and the

Laplacian matrix L Vd
g

� �
can be expressed as

A Vd
g

� �
~

A Vd
g{1

� �
I I � � � I

I 0 I � � � I

I I 0 � � � I

..

. ..
. ..

.
P

..

.

I I I � � � 0

0
BBBBBBB@

1
CCCCCCCA

d|d

ð25Þ

D Vd
g

� �
~diag D Vd

g{1

� �
z d{1ð ÞI, d{1ð ÞI, � � � , d{1ð ÞI

� �
d|d0

ð26Þ

and

L Vd
g

� �
~D Vd

g

� �
{A Vd

g

� �

~

L Vd
g{1

� �
z d{1ð ÞI {I {I � � � {I

{I d{1ð ÞI {I � � � {I

{I {I d{1ð ÞI � � � {I

..

. ..
. ..

.
P

..

.

{I {I {I � � � d{1ð ÞI

0
BBBBBBBBBB@

1
CCCCCCCCCCA

d|d

ð27Þ

The characteristic polynomial of the L Vd
g

� �
is determined as:

Pd
g lð Þ~ det lI{L Vd

g

� �� �
: ð28Þ

The matrix lI{L Vd
g

� �
can be rewritten as:

lI{L Vd
g

� �
~diag l{dð ÞI{L Vd

g{1

� �
, l{dð ÞI, . . . , l{dð ÞI

� �
d|d

z

I

..

.

I

0
BB@

1
CCA

d|1

I, . . . , Ið Þ1|d :

ð29Þ

Now, using the matrix determinant lemma, see e.g. Ref. 44

det MzUVT
� �

~ det Mð Þ det IzVTM{1U
� �

, ð30Þ

we obtain

Figure 5 | The average probability ÆP(t)æ, equation (21), for V4
g , where g

runs from 7 to 10.

Figure 6 | The average probability ÆP(t)æ, corresponding to the dual
Sierpinski gaskets embedded into 3-dimension. The generation g runs

from 7 to 10.
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det lI{L Vd
g

� �� �
~ det l{dð ÞI{L Vd

g{1

� �� �
det l{dð ÞIð Þ½ �d{1det Iz l{dð ÞI{L Vd

g{1

� �� �{1
z

d{1
l{d

I

� 	

~ det I{
d{1
l{d

L Vd
g{1

� �
z l{1ð ÞI

� 	
det l{dð ÞIð Þ½ �d{1

~ det l{1ð ÞIð Þ det l{dð ÞIð Þ½ �d{2det
l l{dð Þ

l{1ð Þ I{L Vd
g{1

� �� �
:

ð31Þ

Thus,

Pd
g lð Þ~ l{1ð Þd

g{1

l{dð Þ d{2ð Þdg{1

Pd
g{1 Qd lð Þð Þ, ð32Þ

where

Qd lð Þ~l l{dð Þ= l{1ð Þ: ð33Þ

Laplacian Eigenvectors of Vd
g . Analogous to the eigenvalues, the eigenvectors of

L Vd
g

� �
can also be derived directly from those of L Vd

g{1

� �
. Assume that l is an

eigenvalue of Laplacian matrix for Vd
g , the corresponding eigenvector of which is

v g Rdg, where Rdg is the dg-dimensional vector space. Then the eigenvector v can be

determined by solving equation lIg{L Vd
g

� �� �
v~0. We distinguish two cases:

l[L 1ð Þ
g and l[L 2ð Þ

g , which will be separately treated as follows.

For the case of l[L 1ð Þ
g , in which all l 5 d, equation lIg{L Vd

g

� �� �
v~0

becomes

Ig{1{L Vd
g{1

� �
Ig{1 Ig{1 � � � Ig{1

Ig{1 Ig{1 Ig{1 � � � Ig{1

Ig{1 Ig{1 Ig{1 � � � Ig{1

..

. ..
. ..

.
P

..

.

Ig{1 Ig{1 Ig{1 � � � Ig{1

0
BBBBBBBB@

1
CCCCCCCCA

v1

v2

v3

..

.

vd

0
BBBBBBB@

1
CCCCCCCA

~0, ð34Þ

where vector vi(1 # i # d) are components of v. Equation (34) leads to the following
equations:

v1zv2zv3z...zvd~L Vd
g{1ð Þv1 ,

v1zv2zv3z...zvd~0:

�
ð35Þ

Then we know that v1 is the eigenvector corresponding to the eigenvalue 0 in

L Vd
g{1

� �
, that is, v1~ 1, 1, � � � , 1ð ÞT . Let vi~ vi,1,vi,2, . . . ,vi,dgð ÞT , then, Eq. (35) is

equivalent to the following equations:

Xd

i~2

vi,j~{v1,j, j~1, 2, � � � , dg{1
� �

: ð36Þ

The set of all solutions to any of the above equations consists of vectors of the
following form

v2,j

v3,j

v4,j

..

.

vn,j

0
BBBBBBB@

1
CCCCCCCA

~

{v1,j

0

0

..

.

0

0
BBBBBB@

1
CCCCCCAzk1,j

{1

1

0

..

.

0

0
BBBBBB@

1
CCCCCCAzk2,j

{1

0

1

..

.

0

0
BBBBBB@

1
CCCCCCAz � � �zkd{2,j

{1

0

0

..

.

1

0
BBBBBB@

1
CCCCCCA, ð37Þ

where k1,j, k2,j, …, kd22,j are arbitrary real numbers. In Eq. (37), the solutions for all the
vectors vi(2 # i # d) can be rewritten as

vT
2

vT
3

vT
4

..

.

vT
n

0
BBBBBBB@

1
CCCCCCCA

~

{vT
1

0

0

..

.

0

0
BBBBBBB@

1
CCCCCCCA

z

{1 {1 � � � {1

1 0 � � � 0

0 1 � � � 0

..

. ..
. ..

.

0 0 � � � 1

0
BBBBBB@

1
CCCCCCA

k1,1 k1,2 k1,3 � � � k1,nt{1

k2,1 k2,2 k2,3 � � � k2,nt{1

k3,1 k3,2 k3,3 � � � k3,nt{1

..

. ..
. ..

. ..
.

kn{2,1 kn{2,2 kn{2,3 � � � kn{2,nt{1

0
BBBBBBB@

1
CCCCCCCA

, ð38Þ

where ki,j(1 # i # d 2 2; 1 # j # dg21) are arbitrary real numbers. Using Eq. (38), we
can obtain the eigenvector v associated with the eigenvalue d. Furthermore, we can

easily check that the dimension of the eigenspace of matrix L Vd
g

� �
corresponding to

eigenvalue d is (d 2 2)dg21.

We proceed to address the case of l[L 2ð Þ
g . For this case, equation

lIg{L Vd
g

� �� �
v~0 can be rewritten as

l Vd
g

� �
{dz1

� �
Ig{1{L Vd

g{1

� �
Ig{1 � � � Ig{1

Ig{1 l Vd
g

� �
{dz1

� �
Ig{1 � � � Ig{1

..

. ..
. ..

.

Ig{1 Ig{1 � � � l Vd
g

� �
{dz1

� �
Ig{1

0
BBBBBBB@

1
CCCCCCCA

v1

v2

..

.

vn

0
BBBB@

1
CCCCA~0, ð39Þ

where vector vi(1 # i # d) are components of v. Eq (39) leads to the following
equations:

l Vd
g

� �
{dz1

� �
Ig{1{L Vd

g{1

� �� �
v1zv2zv3z � � �zvn~0,

v1z l Vd
g

� �
{dz1

� �
v2zv3z � � �zvn~0,

v1zv2z l Vd
g

� �
{dz1

� �
v3z � � �zvn~0,

..

.

v1zv2zv3z � � �z l Vd
g

� �
{dz1

� �
vn~0:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð40Þ

Resolving Eq. (40) yields

l Vd
g

� �
l Vd

g

� �
{d

� �
l Vd

g

� �
{1

Ig{1{L Vd
g{1

� �0
@

1
Av1~0,

v2~v3~ � � �~vn~{
1

l Vd
g

� �
{1

v1:

8>>>>>>><
>>>>>>>:

ð41Þ

As demonstrated in the first subsection of Methods, if l is an eigenvalue of l Vd
g

� �
,

then Qd lð Þ~ l l{dð Þ
l{1

is an eigenvalue of l Vd
g{1

� �
. When i # dg21, we have

l Vd
g

� �
l Vd

g

� �
{d

� �
l Vd

g

� �
{1

~li Vd
g{1

� �
, while in the situation dg21 , i # 2dg21,

l Vd
g

� �
l Vd

g

� �
{d

� �
l Vd

g

� �
{1

~li{dg{1 Vd
g{1

� �
. From Eq. (41), vector v1 is the eigenvector of

L Vd
g{1

� �
corresponding to the eigenvalue li Vd

g{1

� �
. Applying the v1 into Eq. (41),

we will get all of the vi(2 # i # d) and finally the eigenvector of L Vd
g

� �
corresponding

to li Vd
g

� �
. In this way, we have completely determined all eigenvalues and their

corresponding eigenvectors of L Vd
g

� �
.
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